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THE SU(1, 1) PROPAGATOR AS A PATH INTEGRAL OVER NONCOMPACT GROUPS
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The path integral on a noncompact group manifold is constructed. Using the Fourier decomposition on SU(1, 1) the
corresponding propagator is calculated. An application is made for the modified Pdschl-Teller potential, where the energy
eigenvalues and the normalized wavefunctions of bound and scattering states are found simultaneously.

In recent years, many potentials obeying a certain dynamical symmetry have been added to the list of
path-integrable systems. Employing completeness and orthogonality of the corresponding group represen-
tations has been found to be an important tool for the integration over paths. For example, the SO(4)
dynamical symmetry of the Coulomb [1] and the dyonium problem [2] has been utilized via a nonlinear
coordinate transformation. By a different technique, various systems with dynamical SU(2) symmetry have
become solvable, too [3-5]. From that point of view, the evaluation of the path integral over group
manifolds is important. Up to now only bound-state problems related to compact groups have been
discussed. In order to solve scattering problems one has to consider the path integral over noncompact
groups.

One of the simplest of this type is SU(1, 1). Recently this group has attracted much attention in the
algebraic approach to scattering theory [6]. The purpose of this paper is to perform the path integral over
the SU(1, 1) manifold. First we will give a review of this group and its representations to derive an explicit
expression for the Fourier analysis on SU(1, 1). Then the Feynman propagator is constructed. Expanding
the short-time propagator into SU(1, 1) matrix elements, the integration over the paths can be performed.
Finally we will apply this technique to the one-dimensional modified Poschl-Teller potential.

The spinor representation of SU(1, 1) has been discussed by Bargmann [7]. Usually the elements are
parametrized by eulerian “angles”

( o) = e 70 cosh(7/2) sinh(7/2)\[{e™ ¥ 0
B 0 92| sinh(r/2) cosh(r/2) || 0 &2
0<ep<2m, 0<7<00, 0y <4m.

(1)

With these parameters the invariant volume element is given by dg = sinh 7 d7 d¢ dy/167°. The unitary
irreducible representations of the fundamental series are [7]

D I=-%,0,%5,1,... m=I1+1,1+2,..., for 6=+,
m=—[—1, —[1—-2,..., for o= —,

I=—%+is, s20,m=0, +1, +2,..., for o6=0, (2)
s>0, m=+3%, +3,..., for o=3.

According to eq. (1) the matrix elements are given by the multiplier representation
dyn(g) =77 e VYN (7). (3)
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Actually the Bargmann function V.o(7) may be understood as an analytical continuation in parameéter 6
and index j of Wigner’s d},,(8) € SU(2). Explicitly we have for m > n

12
Vit(r)= T i Y ( I;((llj_’: i j;gg?_ ll)) ) [cosh(/2)] ™" [sinh(r/2)] """
X, Fi(l=n+1, =n—1;1+m—n; —sinh*(7/2)),
—n —h— V2 m+nyp . m—n
i ()= gt | T e e | feosn(a/2)] ™ sinn( /2]
XLF(1+m+1, m—1;1+m—n; —sinh?(r/2)). (4)

Note that V(1) =(—1)"""¥,:(r). For the continuous series ¥,,!/2**°(r) may be obtained by

analytical continuation in the index /. As was shown by Bargmann, the Hilbert space of square integrable

functions on SU(1, 1) is spanned by the matrix elements of the continuous and the discrete class for /> 0.
For the Fourier analysis [8]

FN) = [f()DMs ") dg.  f(5)= LANTr{ [(A)D(g)} dy, (5)
only these have to be considered. The “dimensions” d, for SU(1, 1) have the values

dy=21+1, for 71=0,3%,1,..., ©)

=2s tanh[m(s +io)], for /= —3+is.
Together with (5) the explicit Fourier decomposition on SU(1, 1) is now given by
o o0
f(g)=z[( > @)+ [“ds 2 tanh[«r<s+io>])a;n(z>d:,;:(g>], (7a)
o | \2/=0 0

with

ar, (= [ f(g)|din(2)]" dg. (7b)

su(l, 1)

In order to construct the Feynman propagator we make use of an isomorphism between the SU(1, 1)
manifold and a four-dimensional hyperboloid given by

(r, 1) =(x")’ + (x?)° = (x*)* = (x*)* = const. (8)
We introduce the following coordinates for the pseudo-euclidean space defined by (8).

x' =rcosh(7/2) cos[(p+¢)/2], 0<7<oo0,

x?=rcosh(7/2) sin[(¢ +¢)/2], 0<op<2m,

x?=r sinh(7/2) cos[(p —¢) /2], O<y<4m,

x*=r sinh(7/2) sin[(¢ — ¢)/2]. (9)
With the given metric the short-time action for a free particle in the usual sliced-time basis is

~ 2 2 2 2

Sj=(m/2c)[(Ax}) +(ij-2) —(Ax}) —(Axf) ] (10)
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This form requires some modification of the standard path-integral formalism derived by Langguth and
Inomata [9]. For the compact subspace, the x'—x? plane, the mass still has a small positive imaginary part,
M =m +in (1> 0). For the noncompact subspace, however, one needs a small negative imaginary term
M =m — i, in order to have well-defined integrals. Moreover, the normalization factors of the Feynman
ansatz have to be chosen in the following way

im

K(ry, nity=t,) = lim f]‘[e“/h)S 1‘[ 2mh€ . H d*r,. (11)

Expressing .S:J in the coordinates (9) and constraining onto the hyperboloid =1 in the usual way [4],
yields the following ansatz for the SU(1, 1) propagator,

: 12 gy NOL
K(e,, e,; t,—1,)= 11m fl_[ eli/m)S, I—I (Zﬂhﬁ) S ]1 § sinh 7, dr, de, dy,
=

S}:(m/f)[l_(ejaej—l)]n (12)

where e is a unit vector on the pseudosphere (r, r)=1.
Ident1fy1ng the coordinates (9) with the parameters (1), defining g,=g(¢,, 7,, ¥,) and g,=(®, 7. ¢)
=g;8;- ', the action may be expressed by

S = (m/e)[ -1 Tr(g,.)] = (m/e){l — cosh(#,/2) cos[(é)j + J/j)/2] } (13)

Egs. (12) and (13) are the basis for the expansion of the short-time propagator into SU(1, 1) matrix
elements. Namely using the generating functions for Bessel functions

exp{ —iz cosh(7/2) cos[(@ +¢)/2]) = ¥ ei”("”‘“(—i)szzp(z cosh(7,/2)) (14)
2p=—00
we obtain the Fourier coefficients
a;‘nn(l):%(_i)2m8mp an( ) (15)

with the remaining integral
I(z) = foo.fzm(z cosh(7/2))(cosh(r,/2))>" F(1+14+m, m—1;1; —sinh*(7/2)) sinh 7 d7r. (16)
0

Expressing the Bessel function in terms of Meier’s G-function, the integral can be performed for Re /> — 1,

using ref. [10]. After some algebraic manipulations one finds

2m

1(z) = 4i

T2 4 Koy (z €772 (17)

K, (x) 1s the modified Bessel function of the third kind. For large z and Re z > 0 (Re z < 0) in the discrete
(continuous) case the coefficients (15) are

i\ . 20+1)° -1}
afnn(l)~5%5(ﬂ) ?—ﬂe_‘zexp(—ig—“)b‘mn. (18)

z iz 2z
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Together with eq. (8) we find the asymptotic relation for small € and M = m + in, respectively:

1

eXP(h—Aj[l —1 Tr(g)]) =

1 (2¢rihe )1/’2 2mhe
2q?

<z £

m im

Y (21+1) +/ ds 2s tanh[=( s+1o)])x (g)e (1/}‘1)5,5}

o L\2i=0
(19)
where
e a 2
x/(g)=TrD(g).  E£=(r/2m)[1+1)" 3] (20)
Using the orthogonality of characters
. v &8 ) XK (g00877) gy = 8, 8O M) x5 (5,187 ) /b, (21)

the resulting SU(1, 1) propagator is expressed in terms of group characters

1 = :
K(eb7 ea; th_ta)—__ 2 2 ( Z (21+1) exp[_(l/h)E/(tb_ta)]XT(ghgzr])
i o 2{=0

+foood5 25 tanh[ (s +io)] exp[ﬁ(i/h)E7%+i5(tb_ta)]xil/ZJris(gbgz:l) .
(22)

With eq. (22) we have completed the calculation of the propagator on the SU(1, 1) manifold, having a
continuous and a discrete spectrum.

As an example, we would like to apply this treatment to the one-dimensional modified Poschl-Teller
potential (mPT)

V(x)= o

2m

2_1 2_1
(,u LI L , 0<x<oo. (23)

sinh®>x  cosh’x

This problem is also of interest for the path integration over the SO( p, ¢) manifold [11]. The difference
between (23) and the usual problem is that hyperbolic functions replace the trigonometric ones. So the
mPT may be understood, in some way, to be the analytical continuation of the ordinary one, having
SU(1, 1) instead of SU(2) as dynamical symmetry. Viewing SU(1, 1) as the continuation of SU(2), the
mPT can be solved in an analogous way [4,5].

Putting x = 7/2 one finds for the Feynman kernel

)1/2N 1

[11%ds,
1

K*(Xb7 xa’ -t )_ hm /He(l/h)s H(2‘1Th€

S, = (m/e)[1 — cosh(Ar,/2)] + 5— w3 2

1
2m ( sinh( 7./2 ) smh( 1/2) cosh( 2) cosh( 1/2) 4

:;|H

(24)
Here K™ is the usual propagator with e replaced by —e. Eq. (24) may be transformed into that of the
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SU(1, 1) propagator (12) by introducing two angular variables ¢ €[0, 2] and ¢ €[0, 4n]. For this
procedure one has to restrict p and » to positive integers [3—5]. The result is

2w pdm
Ki(xb’ xa; tb_la)z%(Sinh T Sil’lh Th)l/?_f f Q(eb’ €, lb_[al)d¢b dq)b’ (25)
0 0

with

N—-1

( ct,—1,) = lim ﬁ <i/h>f;[N]( m )1/2 Lo N]Y‘]J inh 7, d7, dep, dy
Qe ety — 1 _Neocszle 2mihe Jmhe L1 s SMNT AT A, Qv

J=1 Jj=1
Si=(m/e)[1 -3 Tr(g))] +3h(v+p) Mg+ 3 (v —p) Ay, — hle/8m. (26)
The complete propagator is found by making use of egs. (19) and (21). After reversing time we have
(v—p)/2-1
K(xb> Xa; [b_trzri): Z exp[_(i/h)E/([h—tzl)]¢[(xb)¢7k(le)
/=0
+‘/O‘ dk exp[_(i/h)Ek([h_tu)](i)k(xb)qbt’(xa)* (27)
where
E = —(R/2m)(21+1)°, g, (x)=[(21+ 1) sinh 2x]2VEL a0 (2x), (28a)
E,=hK*/2m,  ¢(x) = [k tanh[a(3k +i0)] sinh 2x]'PV 13020 (2x), (28b)

with 0 =0 (1/2) for u+ » even (odd). This result is in agreement with that obtained earlier for p=1/2
[3,6]. Since the propagator (11) has the property
lim K(r,, r,; t,—t,)=8(r,—r,),

=1,

it is ensured that the wavefunctions (28) are correctly normalized. For » < p+ 2(o + 1) the sum in (27)
vanishes, i.e. there are no bound states. Finally, in the limit x — oo we find from eq. (28b), ¢, (x)~ A e'**
+ B e "~ with

Ak TER)T (A +p—2)/2-ik/)T((A+p+7r)/2—ik/2)

B~ Tt tp—v)2+ik/)T((1 - ptr)/241k/2) ()

completing our discussion of the mPT.
The same technique may be applied to the modified nonsymmetric Rosen—Morse oscillator.

The authors would like to thank Professor A. Inomata for bringing this problem to their attention.
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